首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5471篇
  免费   301篇
  国内免费   601篇
林业   231篇
农学   577篇
基础科学   193篇
  2168篇
综合类   1858篇
农作物   606篇
水产渔业   90篇
畜牧兽医   352篇
园艺   103篇
植物保护   195篇
  2024年   12篇
  2023年   115篇
  2022年   190篇
  2021年   236篇
  2020年   215篇
  2019年   223篇
  2018年   186篇
  2017年   346篇
  2016年   318篇
  2015年   279篇
  2014年   253篇
  2013年   438篇
  2012年   425篇
  2011年   381篇
  2010年   284篇
  2009年   272篇
  2008年   274篇
  2007年   310篇
  2006年   276篇
  2005年   188篇
  2004年   175篇
  2003年   141篇
  2002年   91篇
  2001年   71篇
  2000年   78篇
  1999年   64篇
  1998年   62篇
  1997年   62篇
  1996年   61篇
  1995年   52篇
  1994年   44篇
  1993年   44篇
  1992年   48篇
  1991年   41篇
  1990年   22篇
  1989年   28篇
  1988年   24篇
  1987年   25篇
  1986年   4篇
  1985年   7篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1977年   3篇
  1962年   1篇
排序方式: 共有6373条查询结果,搜索用时 15 毫秒
61.
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   
62.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   
63.
本试验旨在分析抗草甘膦玉米和转Bt基因玉米原料及饲粮与同源非转基因玉米原料及饲粮体外总能消化率以及酶水解物能值,为转基因玉米的营养实质等同性仿生评定方法的研究提供参考。试验采用单因素完全随机设计,使用单胃动物仿生消化系统模拟饲料原料和饲粮在鸡胃肠道的消化过程,分析同源非转基因玉米、抗草甘膦玉米和转Bt基因玉米以及对应的3种玉米-豆粕饲粮在不同体外模拟消化阶段的干物质消化率、总能消化率和酶水解物能值的差异。结果表明:同源非转基因玉米、抗草甘膦玉米和转Bt基因玉米以及对应饲粮在常规概率成分含量上是相似的。抗草甘膦玉米及饲粮与同源非转基因玉米及饲粮相比,在干物质和能量胃消化率、全消化道消化率及酶水解物能值上均没有显著差异(P0.05)。转Bt基因玉米全消化道总能消化率低于同源非转基因玉米(P=0.03,变异系数=0.50%),对应玉米饲粮的酶水解物能值则高于同源非转基因玉米饲粮(P=0.02,变异系数=1.12%),但均处于仿生消化系统测试的误差范围内(变异系数≤1.64%)。由此可见,抗草甘膦玉米的酶水解物能值与同源对照玉米没有差异,而转Bt基因玉米存在统计学意义上的差异,但所有的测值均处于仿生消化系统的测试误差之内。仿生法发现的差异是否具有生物学意义有待体内试验验证。仿生法可为转基因饲料营养等同性研究提供一种新方法。  相似文献   
64.
Here, we examine soil-borne microbial biogeography as a function of the features that define an American Viticultural Area (AVA), a geographically delimited American wine grape-growing region, defined for its distinguishing features of climate, geology, soils, physical features (topography and water), and elevation. In doing so, we lay a foundation upon which to link the terroir of wine back to the soil-borne microbial communities. The objective of this study is to elucidate the hierarchy of drivers of soil bacterial community structure in wine grape vineyards in Napa Valley, California. We measured differences in the soil bacterial and archaeal community composition and diversity by sequencing the fourth variable region of the small subunit ribosomal RNA gene (16S V4 rDNA). Soil bacterial communities were structured with respect to soil properties and AVA, demonstrating the complexity of soil microbial biogeography at the landscape scale and within the single land-use type. Location and edaphic variables that distinguish AVAs were the strongest explanatory factors for soil microbial community structure. Notably, the relationship with TC and TN of the <53 μm and 53–250 μm soil fractions offers support for the role of bacterial community structure rather than individual taxa on fine soil organic matter content. We reason that AVA, climate, and topography each affect soil microbial communities through their suite of impacts on soil properties. The identification of distinctive soil microbial communities associated with a given AVA lends support to the idea that soil microbial communities form a key in linking wine terroir back to the biotic components of the soil environment, suggesting that the relationship between soil microbial communities and wine terroir should be examined further.  相似文献   
65.
Enhancing dry matter production with higher partitioning to fruit bunches is important for sustainable intensification of oil palm. A series of best management practices including site-specific nutrient management, canopy management, and harvesting has been developed for oil palm plantations. However, the effects of these practices on dry matter production and partitioning, and how the effects vary with climatic and soil conditions of plantation sites, remain largely unknown. We established a four-year field trial including 30 paired commercial blocks across Sumatra and Kalimantan, Indonesia. The paired treatments included site-specific best management practices, and standard estate practices as the control. The annual production of aboveground dry matter was 30.0 ± 0.5 t ha−1 yr−1 (mean ± se) under best management practices, higher than 28.8 ± 0.5 t ha−1 yr−1 under standard estate practices. The bunch index, an indicator of the fruit production efficiency, increased by 12% under best management practices compared to standard estate practices. Partitioning of dry matter to the fronds decreased by 8% under best management practices, compared to standard estate practices. The positive effect of best management practices on the annual production of total aboveground dry matter was stronger in the plantation site with higher annual rainfall. These results are useful for optimizing management practices to improve sustainable intensification of oil palm.  相似文献   
66.
为探究不同基追肥比例对湖南省双季稻产量及干物质积累的影响,以‘湘早籼32号’和‘中嘉早17’为早稻供试品种,‘湘晚籼12号’和‘五优308’为晚稻供试品种,设置6种不同施肥比例(T1~T6)与1个不施肥处理(T7)。研究结果表明:施肥能有效提高水稻产量,比不施肥增产16.07%~91.33%。早稻‘中嘉早17’以基追肥比例8:2:0:0产量最高,为7497.00 kg/hm~2,晚稻‘五优308’以基追肥比例6:2:2:0产量最高,为9387.90 kg/hm~2;早晚稻的干物质积累量均以基追肥比例4:3:3:0较高,是一种有利于干物质积累的施肥方式,前轻后重的施肥方式茎秆重、叶片重、穗重显著低于其他处理,基追肥比例0:5:3:2的根系重与茎秆重分别比其他施肥处理少9.72%~63.84%和6.42%~27.82%,表明肥料后移会减少水稻干物质的积累。因此,在湖南地区重施基蘖肥可促进早稻分蘖的发生,晚稻在重施基蘖肥的基础上适当配施穗肥可增加单位面积颖花数、提高结实率,以此获得双季稻的高产。  相似文献   
67.
Urban forests (UF) provide a range of important ecosystem services (ES) for human well-being. Relevant ES delivered by UF include urban temperature regulation, runoff mitigation, noise reduction, recreation, and air purification. In this study the potential of air pollution removal by UF in the city of Florence (Italy) was investigated. Two main air pollutants were considered – particulate matter (PM10) and tropospheric ozone (O3) – with the aim of providing a methodological framework for mapping air pollutant removal by UF and assessing the percent removal of air pollutant.The distribution of UF was mapped by high spatial resolution remote sensing data and classified into seven forest categories. The Leaf Area Index (LAI) was estimated spatially using a regression model between in-field LAI survey and Airborne Laser Scanning data and it was found to be in good linear agreement with estimates from ground-based measurements (R2 = 0.88 and RMSE% = 11%). We applied pollution deposition equations by using pollution concentrations measured at urban monitoring stations and then estimated the pollutant removal potential of the UF: annual O3 and PM10 removal accounted for 77.9 t and 171.3 t, respectively. O3 and PM10 removal rates by evergreen broadleaves (16.1 and 27.3 g/m2), conifers (10.9 and 28.5 g/m2), and mixed evergreen species (15.8 and 31.7 g/m2) were higher than by deciduous broadleaf stands (4.1 and 10 g/m2). However, deciduous forests exhibited the largest total removal due to the high percentage of tree cover within the city. The present study confirms that UF play an important role in air purification in Mediterranean cities as they can remove monthly up to 5% of O3 and 13% of PM10.  相似文献   
68.
不同栽培模式与密度对小豆花后干物质积累及产量的影响   总被引:2,自引:2,他引:0  
为探明栽培模式与群体密度对小豆植株干物质积累及产量的影响,采用平作和65 cm宽垄作2种栽培模式,分别采取9万、13万、17万、21万、25万株/hm~2群体密度,测定小豆花后不同部位器官的干重,并于成熟收获后取样测定产量构成。结果表明:随着群体密度的增加,小豆的单株结荚数量和粒数显著降低,单株产量的降低,导致平作条件下随着群体密度的增加产量无显著变化;而垄作条件下,小豆植株的营养器官干重高峰期出现较晚,在鼓粒阶段营养器官仍保持较大干物质积累,单株的结荚数和粒数增加了3.8%~53.8%和13.6%~101.5%,因此,在相同密度条件下垄作的单株产量和单位面积产量显著高于平作17.3%~127.2%和36.8%~80.0%。综合分析小豆的植株形态和产量构成,采用垄作条件保苗株数17万株/hm~2更利于小豆产量的形成,而平作条件下种植密度不易超过21万株/hm~2。  相似文献   
69.
南果梨周年干物质与氮磷钾积累动态   总被引:3,自引:0,他引:3  
【目的】明确南果梨干物质积累特征和氮磷钾养分周年动态积累规律,为南果梨优化施肥量和施肥时期提供依据。【方法】以12年生南果梨树为试材,采用田间采样和树体分解方法,分别于萌芽后10 d(萌芽期)、 30 d(花期)、 65 d(幼果膨大期)、 100 d(果实膨大或新稍停止生长期)、 130 d(果实着色前)、 155 d(果实采收期)、 185 d(采收后)、 210 d(落叶前)8个生育期,选干周和树高一致的3株树,将树体连根从土壤中挖出,分出果实、 叶片、 枝条、 主干、 主根、 侧根、 须根,各器官单独称重,并取200 g左右的鲜样按清水、 洗涤剂、 清水、 1%盐酸、 3次去离子水冲洗、 杀青、 烘干后,电磨粉碎过0.15 mm筛,测定样品中氮、 磷、 钾含量。【结果】1)南果梨周年生育期内,树体干物质当年净积累量为18.4 kg/plant,干物质累积速率出现两次累积高峰,分别是幼果膨大期(0.15 kg/d)和采收期(0.11 kg/d)。2)南果梨树体总氮周年积累量为154.0~301.0 g,新生器官为0~116.2 g,果实膨大期达到最高;多年生器官氮积累量为154.0~194.8 g,落叶前达到最高。3)南果梨树体总磷周年积累量为17.1~37.2 g,果实着色前最高。其中新生器官为13.7 g,果实采收期最高;多年生器官为17.1~24.9 g,果实转色期最高。4)南果梨树体总钾周年积累量为27.9~174 g。新生器官钾为97.3 g,采收期最高;多年生器官钾为27.6~76.6 g,落叶前最高。5)产量大约为17 t/hm2的12年生南果梨从萌芽到落叶前树体当年氮磷钾的单株净累积量分别为146.2、 20.1、 146.1 g,折合1000 kg果实经济产量需吸收氮(N)、 磷(P)、 钾(K)5.4、 0.7、 5.4 kg。【结论】南果梨周年干物质单株积累总量为41.4 kg,当年净积累量为19.7 kg。南果梨干物质积累主要集中在花期到果实膨大期和果实转色到落叶前,分别占47.3% 和47.5%。南果梨从萌芽到落叶前氮、 磷、 钾的单株净累积量分别为146.2、 20.1、 146.1 g,每1000 kg果实经济产量需吸收氮(N)、 磷(P)、 钾(K)5.4、 0.7、 5.4 kg。从开花到果实膨大期和从果实着色到采收后30天对氮吸收分别占总氮累积量的39.0%和49.0%,而磷、 钾的累积从萌芽到开花较快,到果实膨大期磷的累积达67.4%,钾的累积达65.1%,果实膨大期是干物质和氮磷钾积累的关键时期。  相似文献   
70.
Two old (Huangsedadou and Longxixiaohuangpi (LX)) and two new (Jindou 19 (JD) and Zhonghuang 30 (ZH)) soya bean (Glycine max (L.) Merr.) cultivars were used to investigate the influence of soil drying on the abscisic acid (ABA) accumulation in leaves, stomatal conductance (gs), leaf water relations, osmotic adjustment (OA), leaf desiccation tolerance, yield and yield components. The greater ABA accumulation was induced by soil drying, which also inducing gs decreased at higher soil water contents (SWC) and leaf relative water content (RWC) significantly decreased at lower SWC in the new soya bean cultivars than in the old soya bean cultivars. The soil water threshold between the value at which stomata began to close and the RWC began to decrease was significantly broader in the new cultivars than in the old cultivars. The new cultivars had significantly higher OA and lower lethal leaf water potential than old cultivars when the soil dried. The old cultivars had greater biomass, but lower grain yield than the new cultivars in well‐watered, moderate stress and severe stress conditions. Thus with soil drying, the new soya bean cultivars demonstrated greater adaptation to drought by inducing greater ABA accumulation, stomatal closure at higher SWC, enhanced OA and better water relations, associated with increased leaf desiccation tolerance, greater water use efficiency and higher yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号